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By Menuwel Stein and John Neff
SUMMARY

The present paper evaluates the shear buckling stresses of
rectangular flat plates with slmply supported edzes more accurately
than previous work on this problem. Both symmetric (odd nwmber
of buckles) and antisymmetric (even number of buckles) patterns
were considered. A curve is presented from which the critical
stresses may be obtained when the dimensions of the plate are
known.

TIVTRCODUCTTION

In reference 1 Timoshenko presents a solution for the buckling
gtresses of simply supported rectangular flat plates in shear.
Timoshenko considered only the equations which permitted a buckle
pattern symmetric aboubt the midpoint of the plete. This limitation
led to a small ervor in the criticasl strese in several cages in
which the governing buckle pattern was antisymmetric instead of
symmetric.

The buckling stresses have been determined more correctly than
in referenco 1 by considering both the symmetric and the antisym-
nmetric buckle patterms. Through the use of the matrix iteration
method described in reference 2 and by a proper choice of the terms
in the series representing the deflection, more accurate results
were obtained. The theorstical anslysis given in the appendix is
a brief summsry of the derivation given in rsfercnce l.

SYMBOLS

T critical shear stress
k shear-stress coefficient which depends on length-width ratio =
8 of the plate b
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a length of plate

b width of platé

D fléxural gtiffness of plate -~§§£L———~
lE(i - pe)

E Young's modulus for materlal

t thickness of plate

11 Poigson's ratio for materisl

Limnpa integers

w deflection of plate in radlal directlon

X, ¥ axeslof reference

numexrical coefflclents

RESULTS AND DISCUSSION

The critical shesr stress for a rectangular flat plate with
gimply supported edges 18 given by the equation

k%n?D

T =

b2t

Curves are presented in figure 1 glving two values of the shear-
Btress coefficient k; for each value of length-wldth ratlo

from 1 to 4. These two values of ky correspond to buckling into

an odd number of buckles (symmetric buckling) and into an even
number of buckles (sntisymmetric buckling). Because a plate
buckles into the buckle pattern which requives the least load, the
solid-line curve for any glven length-wldth rablo represecntes the
shear~gtress coefficient that corresponds to the governing
buckling load. The computed values of k; from which these

curves wore drawn are glven in table 1. In addlition, table 1
contalng calculated values of dsflectlon-functlion coefficlents
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from which buckling configurations can be drawn for each length-
width ratlo considered.

In figure 2 buckling configurations are shown for length-width
ratios of 1.5 and 2.5 to illustrate the symmetric and antisymetric
types of buckle pattern,respectively. An equation for each of the
buckling configuretions was obtained by substituting into equa-
tion (3) of the appendix the values of the deflection-function
coefficients given in table 1.

The values given in reference 1 for the shesr-stress coeffi-
clent lie sllghtly above the values of the curve for symmetric
buckling shown in figure 1 of the present paper (maximum deviation
about 1 percent). The meximum error in the vesults of refercnce 1,
vwhich amounte to about b percent above the recults of the present
baper, occurs in the range of antisymmetric buckling.

CONCLUDING REMARKS

From a consideration of both symmetric and antisymmetric
buckle patterns, the shear buckling stressss of rectengular flst
plates with simply supported edges were more corrvectly evaluated
then in previous work wherein only symmetric buckle patterns were
considered. Through the use of the matrix itecration method and
by a proper choice of the terms in the serics roprosenting the
deflection, more accurate results wore obtained.

Lengley Memorial Asromautical Laboratory
National Advisory Committoe for Acronavtics
Langley Flold, Va., October 25, 1946
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APPENDIX
THEORETICAL SOLUITON

The critlcal strosees are determined on the basis of the
principle that during buckling the elastic-strain enerzy stored
in a structurs is equal to the work done by the applied losd. For
a rectenguler flat plate loaded in shear this equality can be '
written (reference 1)

b opalze 22
2 I (Q.E+§—Y —E(l-p.) Bwaw <aaw\-} dx dy
2 ¥ )

do | .,Bxa dy" Bx By X 537
b a
= Tt :al: g—‘-’ dx dy (1)
0 Yo ox o¥

The coordinate system is shown in figure 3. Equation (1) can be
revritten 1n terms of the nondimensional shear-stress coefficient
ag follows:

b z .
r : [ Py Py - - BEW >F w 2
—— ......é. - ;_(l - u) a
o z,‘o L\Bx dy dx> oy°

] Eks(ff WAL o sy =0 (2)

whers
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The procedure used in solving equation (2) is to substitute
Por w a function of x and y +that represcnts as closely os
possible tho buckling configuration and satisfics the conditions
at the edges. For any buckle pabbtern vwhere tho value of w
is O at 21l the edgos, the integral of the term with tho coeffi-
cient =-2(1 - u) can be shown to vanish through tho use of Groon's
theorem. (Seo refercnce 3.) If a serios of torms with arbitravy
coefficlents is used to represent w, then the coefficients uway
be determincd by the Raylelgh-Ritz mothod.

A genoral form for the deflecticon w satlsfying the boundary
conditions is

= o
RN max nny
W = " &, 8in sin N (3)
m=1 n=1

If this ocxpression for w is substitubed in equa-tion (2) tho
following equation is obbalnod:

wherc m+ p &nd n+ g are odd numbors.

The coefficients ayn must be chosen to make the valus of ks
& minimm. The minimization of ks with respeocht to cach fpn

¥esultes in the sct of homogeneous linear squations representod by
the following equation:
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3 " |
32ks.%) Em So mnpg o
JUNEREE-S, AT = (5)
T GG rE-AE-P

vhere
m = l, 2, 3, ¢« o e
IJ. - l’ 2’ 3’ L I ] .

end m+p and n 4+ g are odd numbers.

Each of the equations represented by sequation (5) 1s asso-
clated with a specific pair of values of m and n. SBince m + p
and n+ q are both odd, {m+ p + n + ¢q) Tmust be even. If m+ n
ig even, p + g must also be even; if m+n isg odd, p + ¢ must
also be odd. Each of the homogoneous linear equations (5) csn
therefore involve only coefficients ay for which 1 + J is
elther odd or even. The set of equa'bioijxs (5) can therefors be
divided into two independent groups which can bo solved separately,
one group consigting of equabions in which 1 + J i1is odd and the
other group consisting of equations in which 1 % jJ 18 even. The
set of equations in which 1 + J 1s even corresponds to symetric
buckling, and the set in which 1 + J 1is 084 corresponds to anti-
symuetric buckling. Ten equations in ten unknowns were solved
for k, for each type of buckling (symmetric and antisymmetric)

by a matrix iteration method described in refersnce 2. The equa=
tions chosen for each particular valus of a/b should contain
deflection-function coefficlents that give the lowest value of kg

for either type of buckling. (See reference 2.) Tho deflection~
function coefficients Por several values of a/b are given in
table 1.

A representative determinant for a group of equations in
which 1 + J is even 1s
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At a length-width ratio of 1 +the lowest value of k, that

satisfles this determinant i1s less than the lowest value of ke

obtained from any tenth-order determinant in which 1 + J is
odd. A representative determinant for a group of equations in
which 1 + J is odd is

m=1, n=2

m=2, n=1

m=2, n=3

=3, n==

m=l, n=l
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where

M = e 3[%12 + nE(%)Q]E

5,5

At & length-width ratic of 2.5 the lowest value of kB that
gatisfies this determinent is less than the loweqt value of ks
obtained from any tenth-order determinant in which 1 + J 1s even.
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MATTE 1
SHEAR-ITRESE CUEFFICTENTS AND TEFLECTION-FUNCIION CORFFICTERTS
- FlR VARIOUS LENGH-WIDTH RATTOS Off PLATE

Eﬂm equation for the buckling configuratien for sach length-width ratio can bs abtainsd by
substitoting the values of the deflsction-function coefficienta into equation (3) of the
appendix. Values of the cvefficionts not given in this table arve aseumed to be zarb-]

0T

Jhear-stress Deflsctlon~frmotion cooffiolente , ayy (relative magnituies)
Tength-| coafficient, . ) T .
width kg * 1 +J even
ratio,
n C A { 4 X - a - ~ -~ . = = = . — =1 _
/b 11+ 3L

' a?i—i 891 313 ) 8g] -':'115 fop n33 . uhe u.5l u35 &M ¢53 . 56?— aTl 391

1.0 {9.35 |11.63]1.000]-0.070| 0.203} -0.071|-0.005]0.005 | 0.038| 0.003|-0.004)0.005

1.2 18.00 | 9.70|1.000| -.053]| .290{ -.088 00k .036 .018_ -.008 0.003] 0.006 ,

1.5 |7.07 | 7.97|1.000] -. e .oh| .005]| ~.on1 .003| .oo7 -0.001

2.0 659 6.61]1.0707 ~-.032 .31;3- -..325 -.002| .005| .OaB| -.0k2] -.010 .ool;. 3

Lo |s.67 | s-17]--153 .200| 1.000 ~.048| -.324| -.300 032] .012]-0.032|%.010
. 1+J odd

ﬂ12 m B23 532 ﬂhl 81‘.3 ﬂ? &61 851]_ 363 &m

2.5 |6.29 | 6.06}0.198| 1.000|-0.052]-0.316]-0.200]0.035 |-0.003 [-0.021|-0.002]0.008

3.0 6.0 | 5.8]| .150| 1.000} -.0k2| -.340} ~.333 ,qho -028| -.c20 £005{-0.006
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Figure 1.- Buckling stresses of a simply supported rectangular plate

in shear.
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(a) Length-width ratio,
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(b) Length-width ratio, 2.5; two large buckles (antisymmetric buckling).

Figure 2.~ Buckling configurations of simply supported rectangular

flat plates in shear.
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Figure 3.~ Coordinate system for rectangular flat plate.
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